
in

Stefan Fuchs

in ii

COLLABORATORS

TITLE :

in

ACTION NAME DATE SIGNATURE

WRITTEN BY Stefan Fuchs March 1, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

in iii

Contents

1 in 1

1.1 Patch.library Documentation . 1

1.2 Features . 2

1.3 Installation . 2

1.4 Programmers . 3

1.5 Example programs . 3

1.6 Support programs . 4

1.7 Distribution . 4

1.8 History . 5

1.9 The future of patch.library . 6

1.10 The Author . 7

in 1 / 7

Chapter 1

in

1.1 Patch.library Documentation

patch.library 5.0 -- High-level handling of SetFunction()

Copyright © Stefan Fuchs, December 1996. Freely distributable.

Click on one of the following topics for more detailed information:

Features
Why using patch.library

Installation
How to install patch.library

Programmers
What programmers should know

Examples
How to use the example programs

Support
What programmes supporting patch.library exist

Distribution
Conditions for redistribution

History
Information about past and present versions

Future
What is planned for future versions

Author
How to get in touch with the author

in 2 / 7

Click on the CONTENTS button at the top to return here at any time.

1.2 Features

FEATURES:

- In general patch.library offers you an easy way of installing and removing
your own patches for library functions.

- Patch.library checks, if your patch can safely be removed (e.g.: when no
other task is running in the patchcode).
Patch.library is ’till now the only system, which can remove patches
100% safe (at least in theory)

- In general patches may only be removed in LIFO order. Patch.library
provides a mechanism that allows you to remove any patch you installed
with patch.library any time.

- Patch.library can automatically extend stacks and therefore make existing
patches safer.

- In addition it provides you a priority system, which allows you to specify
the sequence of the patches, if more than one patch has to be installed for
one library function.

- Patch.library also provides you a way to check, if your patch is already
installed by supplying a name field for every patch.

- Patch.library automatically flushes caches, when needed. So software
that uses patch.library will continue to work on systems with an 68040 or
68060

- With patch.library you have no problems patching pre-V36 dos.library
functions, since patch.library automatically detects these nonstandard
functions and takes the appropriate steps to patch these functions.

- The tasks using the patch may be limited to certain tasknames and/or
taskIDs and/or patterns of tasknames.

- Patches installed by patch.library can be written in pure SAS/C without
any Assembler code.

1.3 Installation

To install patch.library simply copy the file libs/patch.library to libs:

Patch.library will work on any Amiga with any Kickstart version,
but will take advantage of features only provided with higher versions

in 3 / 7

(e.g.: memory pools).

1.4 Programmers

The patchcode you install must obey these rules:
- Patchcodes MUST be reentrant! (i.e. library-functions can always
be used by multiple tasks at the same time)

- Patchcodes MUST preserve ALL registers!
(If replacing a library function a valid returncode must be
set as documented in the Autodocs)

- Patchcodes MUST be pc-relative, if NewCodeSize > 0!
- Patchcodes should use as little stack as possible, because tasks

using your code may otherwise run out of stack.
You may consider using PATT_StackSize to solve this.

- Patchcodes can be ended either with the rts-instruction, which is
the normal method, or with the FALLBACK macro provided in ’Patch.i’.
The FALLBACK macro allows You to end the patch and execute the original
library function, if you replaced the library function (priority = 0).
The FALLBACK macro functions like a ’rts’-instruction, if priority <> 0.

Some more notes and warnings, if you want to use patch.library:
- Some library functions use in-line code (e.g.: exec.library/GetCC())
Patching these functions will always fail.

- Other library functions do not return to the calling task.
For these functions a valid usage-counter can not be maintained.
For this reason the usage-counter of the following functions is not tested:
exec.library/RemTask() (->RemTask(0) does not return)
Removing patches from these functions is a dangerous operation, even
with patch.library.

- Patching exec.library/Switch() with patch.library is not possible and
will crash the system, because this call switches between stacks.
(This function is patched by XOper)
Should do no harm because this function is PRIVATE anyway.
Same goes for StackSwap().

- There is always a chance (very small) that memory will be deallocated,
while instructions from it will still executed (-> crash).

- Patching functions will use some stack (at least 4 Bytes) from programs
calling the patched function. This might crash the machine, if a program
has only a very small stack reserve.

- If at least one patch is installed, patch.library can not be flushed from
memory even, if the usage-counter becomes null.

More infos for programmers can be found in the accompanying file ’patch.doc’
and in the example programs.

1.5 Example programs

The package includes two programs with assembler source to show you how to use
the patch.library:

in 4 / 7

1. CPUClr: Installs a patch routine for graphics.library/BltClear(), which
uses the CPU instead of the BLITTER to clear Chipmem.
It shows how easy and save it can be to install and remove a
patch, without wasting memory or CPU time.
With the program CPUClrTEST you can check how much faster memory
clearing becomes.
For more informations about CPUClr see CPUClr.doc.

2. ShowNeededFiles: (Simple SnoopDos)
Installs some patch routines to monitor dos.library/Open(),
Lock() and LoadSeg() functions. It shows how the priority system
of patch.library works.
Note that this program works with all versions of the dos.library.
Break this program with CTRL-C.

3. LongDelay: This otherwise useless patch serves as an example how to write
a patch for patch.library without any Assemblercode.

It patches the dos.library/Delay() function and increases the
number of ticks, the Delay() function waits until it returns.

1.6 Support programs

The following programs support patch.library and should be available on
Aminet:

- PatchSetFunc
It patches the exec.library/SetFunction() to use patch.library
instead of the normal OS-function.

- PatchSupervisor
It patches the exec.library/OldOpenLibrary(), OpenLibrary(),
OpenDevice() functions and allows disk-based libraries to be expunged
(in other words: removed from memory), if no task uses it
(Opencount is zero), but patches are still installed.
If the library (or device) is opened again, the patches will
automatically be reinstalled.

So this program may save you some precious memory
(on my system more than 150 KB), especially when used in
conjunction with PatchSetFunc.

1.7 Distribution

This material is © Copyright 1993-96 by Stefan Fuchs. All rights reserved.

It may be distributed freely as long as the following restrictions are met:

- The distributor may charge a fee to recover distribution costs.
The fee for diskette distribution should not be more than
the cost to obtain the same diskette from Fred Fish.
Same goes for distribution on CD.

in 5 / 7

- The distributor agrees to cease distributing the programs and
data involved if requested to do so by the author.

- You may copy and distribute verbatim copies of the program’s
executable code and documentation as you receive it, in any
medium, provided that you conspicuously and appropriately
publish only the original, unmodified program, with all
copyright notices and disclaimers of warranty intact and
including all the accompanying documentation, example files and
anything else that came with the original.

- If you are interested in including any of this material in a commercial
product, you should contact the author for his permission.

- The author will not be liable for any damage arising from the
failure of the programs or the library to perform as described,
or any destruction of other programs using the library residing
on a system. While I know of no damaging errors, the user of this
package uses it at his or her own risk.

This package may be distributed in PD-series (e.g.: the Fred Fish library) or
on the Aminet.

1.8 History

NEWS FOR V5:
- New functions for V5:

* SetPatchProject()
Set parameters for a whole group of patches

* AddPatchNotify()
Send message, if parameters / patches are changed

* RemPatchNotify()
Stop getting these messages

* PatchAlloc()
Allocate structures for patch.library

- Patch.library can extend stacks, when required
- Patches can be written in C, if the new Extended Result system
is used

- Priorities of active patches can now be changed without
removing and reinstalling the patch
- It is now possible to limit the tasks, which will use a patch,
by specifing patterns.
- A path can be given with PATT_LibName or PATT_DevName
- Userdata can be attached to a patch
- Removing patches is now 100% safe (at least in theory),
if the new CheckPC flag is set within the base structure.
However this feature is currently not working on all CPUs and
has not been tested thoroughly. So the default value is off.
- Many bugs have been fixed since the release of the V4 release

of this package.

NEWS FOR V4:
- New functions for V4:

in 6 / 7

* CreatePatchProject()
Introduces the new project management system

* RemovePatchProject()
Remove many patches with one function call

- Patch.library now provides a hook mechanism, which will be called,
when a patch is permanently removed from the system.

- FindPatchTags() has now tags, which allow case-independent search and
searching for multiple patches of the same name

- Patches can now be disabled/enabled
- Caches will now be cleared with all Kickstart versions, when required.
Also fixes a bug, which could crash the machine on 68040 and above
(Made a bad assumption about the order of the bytes in a cache being written
out to memory)

- Patch.library now supports the external PatchSupervisor program, which
helps to save memory, when a library is patched, but not used
by applications.

- Patch.library now uses memory pools, when running on Kickstart 3.0 or
higher.

NEWS FOR V3:
- New functions for V3:

* FindPatchTags()
can be used instead of the old FindPatch() function, but takes a
taglist as parameter for future enhancements.

* SetPatch()
Makes it possible to limit the tasks, which will use a patch.
(e.g.: A OpenWindow() function patch will only apply, if CygnusED
opens a window / A DisplayBeep() function patch will be used for
all tasks, but not for the task, which has the TaskID $007c835a).
Some other attributes of a patch may also be set.

* GetPatch()
This function will, return some attributes and lists of a patch.

* PatchFreeVec()
Frees memory returned by GetPatch().

NEWS FOR V2:
- New functions for V2:

* RemovePatchTags()
replaces the obsolete functions RemovePatch() and WaitRemovePatch()
patches can now be removed ANY TIME

* InstallPatchTags()
replaces the obsolete function InstallPatch()
patching of libraries, devices and resources is now possible

- Many of the internal structures have been made public, so the lists may be
scanned by application programs. Note that these structures were
rearranged for V2, so make sure that at least patch.library V2 is
installed.
Also make sure to use the semaphore protection, when scanning these lists.

- Some bugs have been removed and a few possible locking problems have
been solved.

1.9 The future of patch.library

in 7 / 7

What might be done in the future to enhance patch.library:
- Create AmigaGuide documentation for all programmes.
- Write a commodity similar to the Commodity Exchange program that allows
manipulations of the IncludeTask, ExcludeTask lists of the patches
and a way to load and save these settings (already under development).
This will however need some new features in patch.library like a
notification system, which will only available in the next patch.library
release.

- Program more applications using the patch.library.
- Bug fixing

1.10 The Author

To contact the author for bugreports, hints, ideas, donations,
write to:

Stefan Fuchs E-Mail: snfuchs@sokrates.franken.de
Oskar-von-Miller-Str. 49 Fido: Stefan Fuchs@2:2490/1901

D-90478 Nürnberg
GERMANY

AND FINALLY: If you use patch.library in any of your projects,
please sent me a copy, of your program, so I can make
sure that everything works fine with future versions of
patch.library.

	in
	Patch.library Documentation
	Features
	Installation
	Programmers
	Example programs
	Support programs
	Distribution
	History
	The future of patch.library
	The Author

